VR Locomotion Design Guide

Locomotion is how people move through virtual worlds. It’s one of the core design features of any VR application, as providing a comfortable and efficient locomotion experience is essential to the success of a VR project.

Even in the simplest of applications, there can be a surprising number of situations where locomotion will have a major impact on the user experience. This guide is intended to help developers and designers anticipate and plan for these challenges while maximizing the quality of their locomotion design systems.

Locomotion Design Guide Overview

This guide provides both the building blocks to better understand locomotion for VR application, as well as many best practices and techniques for you to maximize the end user experience and minimize discomfort. While most of the material in this guide is geared towards building first-person VR applications, many of the techniques will be useful in third person applications as well. See below for an overview of this guide as well as links to get started:

Artificial Locomotion TypesArtificial locomotion describes those methods of locomotion that do not depend on the user physically moving around in their playspace. In this section we outline the most common types of artificial locomotion such as world pulling, scripted movement, avatar movement, and more.
Controlling Artificial LocomotionAn overview of the many controller and input methods to drive artificial locomotion. In this section we outline the many types of thumbstick driven locomotion, teleport controls, and considerations for seated control systems.
Design ChallengesWhen designing a VR locomotion system, there are many scenarios to consider. This guide identifies and provides guidance for many of these which can enable users to climb, crawl, jump, and peek over ledges.
Comfort and Usability IssuesThe foundation of any well designed locomotion system is based on comfort and usability. This section discusses the way our sensory systems respond to VR, techniques for improving comfort, and other usability issues such as space limitations and fatigue.
Best PracticesThis section builds upon the information of the previous sections to discuss a number of specific locomotion techniques which have been found to be effective at improving comfort and usability for many people. Techniques include: Turns and Teleportation, Minimize Acceleration, Reduce Optic Flow, Environmental Considerations, and Techniques for Sensory Reinforcement.

Core Types of Virtual Locomotion: Physical and Artificial

The way people move through a virtual environment is usually referred to as Virtual Locomotion. We move through the virtual world, or the virtual world moves around us. Sometimes, both at the same time.

When the camera matches the physical movement of the headset, and the perspective of the viewer in the virtual world matches the exact movement of the headset, we refer to this as “Physical Locomotion”. When the camera moves independently of the position of the headset, we refer to this as “Artificial Locomotion”.

Physical Locomotion

Physical locomotion is when movement in the virtual world is controlled by your movement in the physical world. For example, you walk, turn, or move through the virtual world by walking, turning, and moving in the real/physical world. With physical locomotion, the camera movement in the virtual world should match the exact movement of the physical headset.

Even if your app is not designed for physical locomotion, it’s important to plan for what happens when people physically move in the real world. For instance, what if a user takes a step in physical space or leans forward while sitting? Would this move the virtual camera into solid geometry like walls, decorations or characters in VR? Planning for these scenarios will solve many potential comfort, performance, and usability challenges as you design your locomotion system.

Artificial Locomotion

Artificial locomotion is when movement in the virtual world does not directly correspond to physical movement. For example, when you walk, turn, or move through the virtual world in response to controller inputs, such as pushing a thumbstick.

The most common use of artificial locomotion is to make it possible for people to move through virtual environments that are larger than their physical playspace; however, there are many other scenarios where it is necessary or useful to use artificial locomotion. For example, movement can sometimes be controlled by, or in response to, the environment, like an elevator or a roller coaster.

Games that are designed primarily for physical locomotion can usually benefit from supporting artificial locomotion because it will make it possible for people with limited space or mobility issues to experience the content. Unless physical locomotion is core to the design, it is recommended to support artificial locomotion to make the application as accessible as possible.

Additional Resources for VR Locomotion Design and Development

To start your learning experience into VR locomotion design, we recommend starting with our guide to Common Types of Artificial Locomotion.

As always, if you’re looking to discuss any topics covered within this entire guide, feel free to engage the larger VR developer community within the Oculus Developer Forum.

Lastly, to begin implementing your locomotion system we recommend checking out any of the following resources: