Additional Reading

The following research was not performed by and is not affiliated with Oculus, but provides in-depth detail about some of the topics discussed in this Best Practices guide.

  • Photosensitive Seizures

    • ISO 9241-391:2016, Ergonomics of human-system interaction—Part 391: Requirements, analysis and compliance test methods for the reduction of photosensitive seizures.
  • Simulator Sickness

    • Bowman, D. Koller, D., & Hodges, L.F. (1997). Travel in immersive virtual environments: an evaluation of viewpoint motion control techniques,” Proceedings of the Virtual Reality Annual International Symposium, pp. 45-52.
    • Draper, M.H., Viire, E.S., Furness, T.A., Gawron, V.J. (2001). Effects of image scale and system time delay on simulator sickness with head-coupled virtual environments. Human Factors, 43(1), 129-146.
    • Ehrlich, J.A. & Singer, M.J. (1996). Simulator sickness in stereoscopic vs. monoscopic helmet mounted displays. In: Proceedings of the Human Factors and Ergonomics Society 40th Annual Meeting.
    • Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203-220.
    • Kennedy, R., Stanney, K., & Dunlap, W. (2000). Duration and exposure to virtual environments: Sickness curves during and across sessions. Presence, 9(5), 463-472.
    • Kolasinski, E.M. (1995). Simulator sickness in virtual environments (ARTI-TR-1027). Alexandria, VA: Army Research Institute for the Behavioral and Social Sciences. Retrieved from http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA295861
    • Lin, J. J., Abi-Rached, H., & Lahav, M. (2004, April). Virtual guiding avatar: An effective procedure to reduce simulator sickness in virtual environments. In Proceedings of the SIGCHI conference on Human factors in computing systems(pp. 719-726). ACM.
    • Lin, J. J.-W., Abi-Rached, H., Kim, D.-H., Parker, D.E., and Furness, T.A. (2002). A “natural” independent visual background reduced simulator sickness. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 46, 2124-2128.
    • Moss, J. D., &Muth, E. R. (2011). Characteristics of Head-Mounted Displays and Their Effects on Simulator Sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(3), 308–319.
    • Prothero, J.D., Draper, M.H., Furness, T.A., Parker, D.E., and Wells, M.J. (1999). The use of an independent visual background to reduce simulator side-effects. Aviation, Space, and Environmental Medicine, 70(3), 135-187.
    • Rolnick, a, & Lubow, R. E. (1991). Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics, 34(7), 867–79.
    • Siegel, M., & Nagata, S. (2000). Just Enough Reality: Comfortable 3-D Viewing. IEEE Transactions on Circuits and Systems for Video Technology, 10(3), 387–396.
    • So, R.H.Y., Lo, W.T., & Ho, A.T.K. (2001). Effects of navigation speed on motion sickness caused by an immersive virtual environment. Human Factors, 43(3), 452-461.
    • Stanney, K. M., Hale, K. S., Nahmens, I., & Kennedy, R. S. (2003). What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience. Human factors, 45(3), 504–20.
    • Stoffregen, T.A., Draper, M.H., Kennedy, R.S., & Compton, D. (2002). Vestibular adaptation and aftereffects. In Stanney, K.M. (ed.), Handbook of virtual environments: Design, implementation, and applications (pp.773-790). Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
    • Stoffregen, T.A., Faugloire, E., Yoshida, K., Flanagan, M.B., & Merhi, O. (2008). Motion sickness and postural sway in console video games. Human Factors, 50, 322-331.
    • Welch, R.B. (2002). Adapting to virtual environments. In Stanney, K.M. (ed.). Handbook of Virtual Environments: Design, Implementation, and Application.Lawrence Erlbaum Associates, Publishers: Mahwah, NJ.
  • Vection

    • Hettinger, L.J., Berbaum, K.S., Kennedy, R.S., Dunlap, W.P., & Nolan, M.D. (1990). Vection and simulator sickness. Military Psychology, 2(3), 171-181.
    • Stanney, K.M. & Hash, P. (1998). Locus of user-initiated control in virtual environments: Influences on cybersickness. Presence, 7(5), 447-459.
  • Vergence-accommodation conflict

    • Shibata, T., Kim, J., Hoffman, D.M., Banks, M.S. (2011). The zone of comfort: Predicting visual discomfort with stereo displays. Journal of Vision, 11(8), 1-29.