Oculus Go Development

On 6/23/20 Oculus announced plans to sunset Oculus Go. Information about dates and alternatives can be found in the Oculus Go introduction.

Oculus Quest Development

All Oculus Quest developers MUST PASS the concept review prior to gaining publishing access to the Quest Store and additional resources. Submit a concept document for review as early in your Quest application development cycle as possible. For additional information and context, please see Submitting Your App to the Oculus Quest Store.

Additional Reading

The following research was not performed by and is not affiliated with Oculus, but provides in-depth detail about some of the topics discussed in this Best Practices guide.

  • Photosensitive Seizures

    • ISO 9241-391:2016, Ergonomics of human-system interaction—Part 391: Requirements, analysis and compliance test methods for the reduction of photosensitive seizures.
  • Simulator Sickness

    • Bowman, D. Koller, D., & Hodges, L.F. (1997). Travel in immersive virtual environments: an evaluation of viewpoint motion control techniques,” Proceedings of the Virtual Reality Annual International Symposium, pp. 45-52.
    • Draper, M.H., Viire, E.S., Furness, T.A., Gawron, V.J. (2001). Effects of image scale and system time delay on simulator sickness with head-coupled virtual environments. Human Factors, 43(1), 129-146.
    • Ehrlich, J.A. & Singer, M.J. (1996). Simulator sickness in stereoscopic vs. monoscopic helmet mounted displays. In: Proceedings of the Human Factors and Ergonomics Society 40th Annual Meeting.
    • Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203-220.
    • Kennedy, R., Stanney, K., & Dunlap, W. (2000). Duration and exposure to virtual environments: Sickness curves during and across sessions. Presence, 9(5), 463-472.
    • Kolasinski, E.M. (1995). Simulator sickness in virtual environments (ARTI-TR-1027). Alexandria, VA: Army Research Institute for the Behavioral and Social Sciences. Retrieved from http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA295861
    • Lin, J. J., Abi-Rached, H., & Lahav, M. (2004, April). Virtual guiding avatar: An effective procedure to reduce simulator sickness in virtual environments. In Proceedings of the SIGCHI conference on Human factors in computing systems(pp. 719-726). ACM.
    • Lin, J. J.-W., Abi-Rached, H., Kim, D.-H., Parker, D.E., and Furness, T.A. (2002). A “natural” independent visual background reduced simulator sickness. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 46, 2124-2128.
    • Moss, J. D., &Muth, E. R. (2011). Characteristics of Head-Mounted Displays and Their Effects on Simulator Sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(3), 308–319.
    • Prothero, J.D., Draper, M.H., Furness, T.A., Parker, D.E., and Wells, M.J. (1999). The use of an independent visual background to reduce simulator side-effects. Aviation, Space, and Environmental Medicine, 70(3), 135-187.
    • Rolnick, a, & Lubow, R. E. (1991). Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics, 34(7), 867–79.
    • Siegel, M., & Nagata, S. (2000). Just Enough Reality: Comfortable 3-D Viewing. IEEE Transactions on Circuits and Systems for Video Technology, 10(3), 387–396.
    • So, R.H.Y., Lo, W.T., & Ho, A.T.K. (2001). Effects of navigation speed on motion sickness caused by an immersive virtual environment. Human Factors, 43(3), 452-461.
    • Stanney, K. M., Hale, K. S., Nahmens, I., & Kennedy, R. S. (2003). What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience. Human factors, 45(3), 504–20.
    • Stoffregen, T.A., Draper, M.H., Kennedy, R.S., & Compton, D. (2002). Vestibular adaptation and aftereffects. In Stanney, K.M. (ed.), Handbook of virtual environments: Design, implementation, and applications (pp.773-790). Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.
    • Stoffregen, T.A., Faugloire, E., Yoshida, K., Flanagan, M.B., & Merhi, O. (2008). Motion sickness and postural sway in console video games. Human Factors, 50, 322-331.
    • Welch, R.B. (2002). Adapting to virtual environments. In Stanney, K.M. (ed.). Handbook of Virtual Environments: Design, Implementation, and Application.Lawrence Erlbaum Associates, Publishers: Mahwah, NJ.
  • Vection

    • Hettinger, L.J., Berbaum, K.S., Kennedy, R.S., Dunlap, W.P., & Nolan, M.D. (1990). Vection and simulator sickness. Military Psychology, 2(3), 171-181.
    • Stanney, K.M. & Hash, P. (1998). Locus of user-initiated control in virtual environments: Influences on cybersickness. Presence, 7(5), 447-459.
  • Vergence-accommodation conflict

    • Shibata, T., Kim, J., Hoffman, D.M., Banks, M.S. (2011). The zone of comfort: Predicting visual discomfort with stereo displays. Journal of Vision, 11(8), 1-29.